Simulating spin models on GPU

Lecture 1: GPU architecture and CUDA programming

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

IMPRS School 2012: GPU Computing, Wroclaw, Poland, October 30, 2012

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012

1 / 45

GPU computing

traditional interpretation of GPU computing

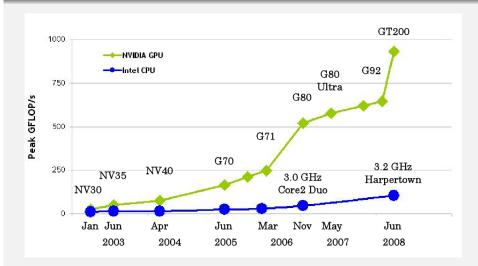
M. Weigel (Coventry/Mainz) GPU basics

30/10/2012 2 / 45

GPU computing

traditional interpretation of GPU computing

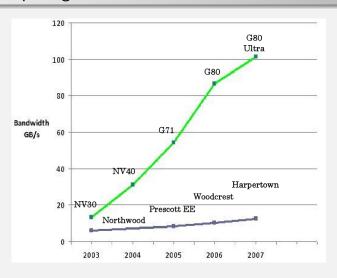
$\mathsf{GPU}\ \mathsf{computing}$



- Core i7 IvyBridge i7-3870: 122 GFLOP/s
- NVIDIA Tesla K10: 4580 GFLOP/s (single precision)

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 2 / 45 M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 2 / 45

GPU computing

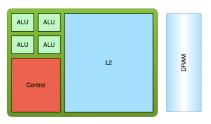


- \bullet Core i7 IvyBridge i7-3870: \approx 21 GB/s
- NVIDIA Tesla K10: 320 GB/s

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 2 / 45

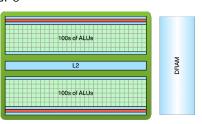
CPU vs. GPU hardware

CPU



- optimized for low-latency access to cached data
- extensive logic for branch prediction and out-of-order execution
- do an unpredictable scalar job as fast as possible

GPU



- optimized for data-parallel throughput computations
- latency hiding
- do as many simple, deterministic jobs in parallel as possible

Outline

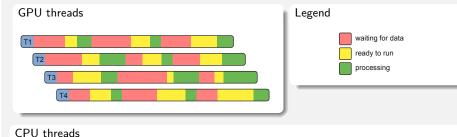
- 1 Latency vs. throughput
- 2 GPU architecture
- 3 Execution model
- 4 Memory hierarchy
- **5** CUDA Programming
- 6 A worked example
- 7 New in Kepler

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 3 / 45

Latency hiding

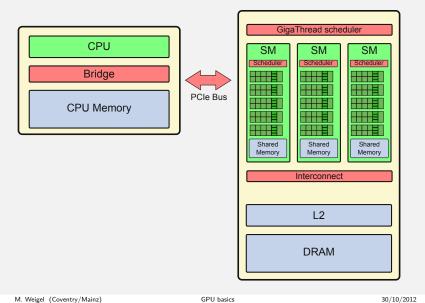


Latency vs. throughput

- - CPU must minimize latency of individual thread for responsiveness
 - GPU hides latency through interleaved execution

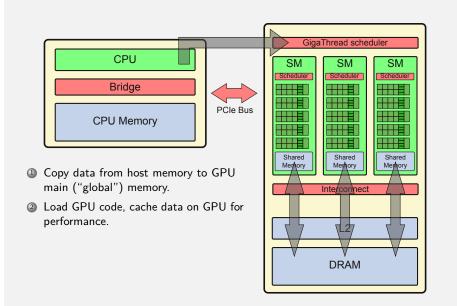
M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 5 / 45 M. Weigel (Coventry/Mainz) GPU basics 30/10/2012

General processing flow

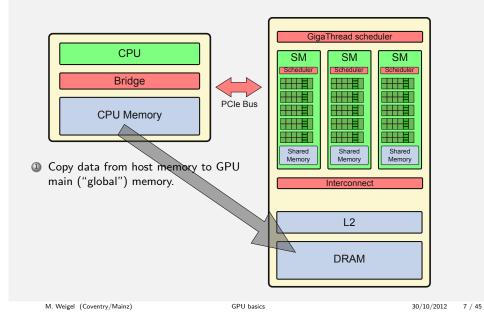


atency vs. throughput

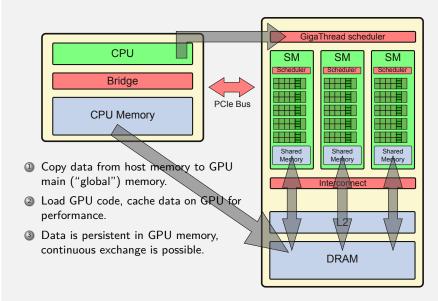
General processing flow



General processing flow

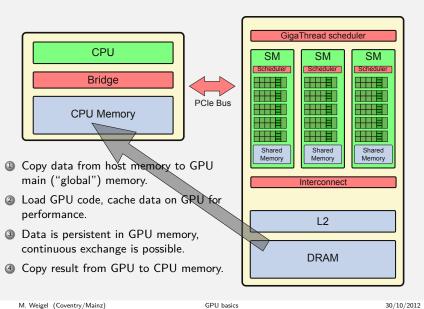


General processing flow



M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 7 / 45 M. Weigel (Coventry/Mainz) GPU basics 30/10/2012

General processing flow



GPU architecture

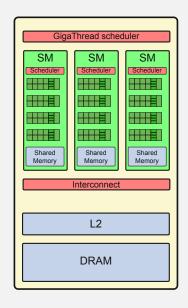
GPU architecture: main components

Main memory

- up to 8GB in current GPUs
- maximum bandwidth approx. 160 GB/s (Fermi) resp. 320 GB/s (Kepler)
- accessible from CPU and GPU sides
- large latency (see below)
- optional error correction (ECC on/off, Fermi onwards)

Several multiprocessors

- similar to a multi-core CPU
- each has its own set of registers, scheduler, caches etc.
- + scheduling units, PCle logic etc.



GPGPU history

NVIDIA

- introduced CUDA in 2007
- developed into a fully blown ecosystem
- series of computing cards
- academic support programs
 - CUDA professorships
 - CUDA research centers
 - CUDA teaching centers

ATI

- ATI Stream introduced in 2007
- less viral marketing
- higher peak performance
- somewhat less flexible architecture

Other architectures

- Intel MIC
 - started as Larabee in 2006
 - prototype board Knight's Ferry (2010)
 - 32 cores with 4 threads/core
 - 2 GB DDR5 memory
 - Knight's Corner developed in connection with SGI in 2012
 - more than 50 cores per chip
 - supposedly used in a number of new supercomputers
- (some) special-purpose machines
 - ANTON by D. E. Shaw research, composed of purpose-built ASICs
 - Janus, FPGA based machine for spin-model simulations
 - QPace, based on the Cell processor known from Playstation 3
 - GRAPE, based on FPGAs and used for astrophysical N-body simvulations

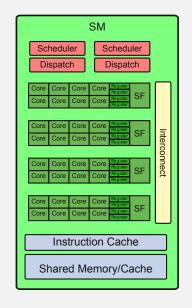
M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 9 / 45

CDII III

GPU architecture: streaming multiprocessor (Fermi)

SM components

- 32 cores per SM (Fermi)
 - 32 fp32 ops/s
 - 16 fp64 ops/s (Tesla)
 - 32 int32 ops/s
- 2 warp schedulers (warp = 32 threads)
 - up to 1536 threads resident in total
- extra special function units (4 for Fermi)
- 64 KB cache on die, re-configurable as 16 KB cache + 32 KB shared memory or vice versa
- 32K 32-bit registers



30/10/2012

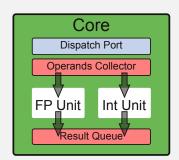
11 / 45

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 10 / 45 M. Weigel (Coventry/Mainz) GPU basics

GPU architecture: computing core

Computing core

- Integer and floating-point units:
 - IEEE-2008 compliant floating point arithmetic (starting from Fermi)
 - Fused multiply-and-add instruction in hardware
- Logic unit
- Move, compare unit
- Branch unit



GPU basics

30/10/2012

M. Weigel (Coventry/Mainz)

12 / 45

M. Weigel (Coventry/Mainz)

GPU basics

Execution model

30/10/2012

30/10/2012

13 / 45

GPU computation frameworks

GPGPU = General Purpose Computation on Graphics Processing Unit

"Old" times: use original graphics primitives

- OpenGL
- DirectX

Vendor specific APIs for GPGPU:

- NVIDIA CUDA: library of functions performing computations on GPU (C, C++, Fortran), additional preprocessor with language extensions
- ATI/AMD Stream: similar functionality for ATI GPUs

Device independent schemes:

- BrookGPU (Standford University): compiler for the "Brook stream program language" with backends for different hardware; now merged with AMD Stream
- Sh (University of Waterloo): metaprogramming language for programmable GPUs
- OpenCL (Open Computing Language): open framework for parallel programming across a wide range of devices, ranging from CPUs, Cell processors and GPUs to handheld devices

NVIDIA GTX 480

- 480 streaming processor cores
- 1.4 GHz clock frequency
- single precision peak performance 1.3 TFLOP/s
- 1.5 GB GDDR5 RAM
- memory bandwidth 178 GB/s

Definitions

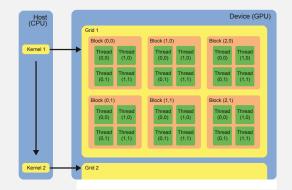
Kernel GPU program that runs on a grid of threads

Thread scalar execution unit

Warp block of 32 threads executed in lockstep

Block a set of warps executed on the same SM

Grid a set of blocks usually executed on different SMs



M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 14 / 45 M. Weigel (Coventry/Mainz) GPU basics

Threading hierarchy

- Parallel portions of an application are executed on GPU as kernels.
 - one kernel is executed at a time (later on modified in concept of streams)
 - each kernel executes in many threads, but on one device
- Compare CUDA threads to CPU threads
 - CUDA threads are lightweight
 - very little creation overhead
 - low cost of thread switching
 - CUDA needs thousands of threads for efficiency
- Kernels are executed by an array of threads
 - all threads run the same code
 - each thread has a unique threadid for control decisions and memory access
- Kernel launched are in grid of thread blocks
 - threads within block cooperate via shared memory
 - threads within a block can synchronize
 - threads within different blocks cannot cooperate (or only via global memory)
 - block executes on one SM and does not migrate
- allows programs to transparently scale to GPUs with different numbers of cores

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 17 / 45

Memory hierarchy

Memory hierarchy

Per thread

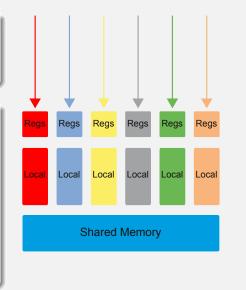
- Registers (extra fast, no copy for ops)
- Local memory

Thread blocks: shared memory

- allocated by thread block, same lifetime as block
- allocate as

```
__shared__ int shared_array[
    DIM];
```

- low latency (of the order of 10 cycles), bandwidth up to 1 TB/s
- use for data sharing and user-managed cache



CUDA code: C with some extra reserved words

Consider a simple "SAXPY" computation, i.e., "Single-Precision $A \cdot X + Y$ ".

```
Void saxpy_serial(int n, float a, float *x, float *y)
{
   for (int i = 0; i < n; ++i)
      y[i] = a*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);</pre>
```

```
CUDA C code
__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel <<<nblocks, 256>>>(n, 2.0, x, y);
```

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 18 / 45

Memory hierarchy

Memory hierarchy

Per device: global memory

- accessible to all threads on device
- lifetime is user-defined

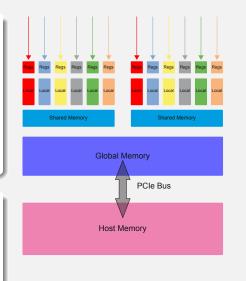
- latency several hundred clock cycles
- ullet bandwidth pprox 160 GB/s on Fermi (access pattern needs to conform to coalescence rules for good performance)

Per host: device memory

M. Weigel (Coventry/Mainz)

- no direct access from CUDA threads
- copy data to/from device with

```
cudaMemcpy(void* dest, void*
    src, size_t nbytes,
    cudaMemcpyHostToDevice);
```



Memory hierarc

Memory hierarchy (summary)

More generally, the different types of memory have the following characteristics:

Memory	Location	Cached	Access	Scope	Lifetime	
Register	On-chip	N/A	R/W	One thread	Thread	
Local	Off-chip	No	R/W	One thread	Thread	
Shared	On-chip	N/A	R/W	All threads in a block	Block	
Global	Off-chip	(Yes)	R/W	All threads + host	Application	
Constant	Off-chip	Yes	R	All threads + host	Application	
Constant	Off-chip	Yes	R	All threads + host	Application	

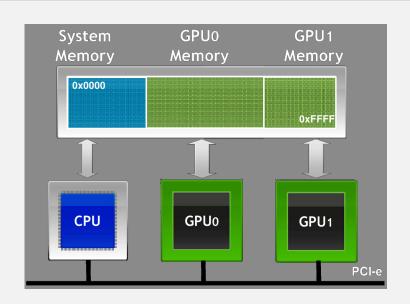
M. Weigel (Coventry/Mainz)

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 22 / 45

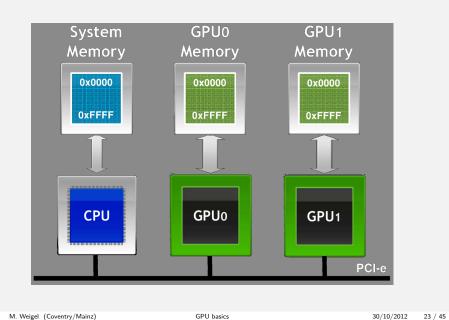
Unified virtual addressing



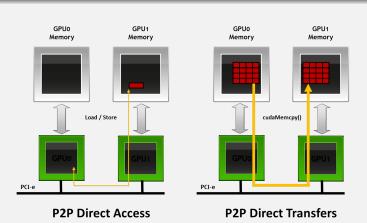
GPU basics

Memory hierar

Unified virtual addressing



DirectGPU data transfers



- GPUDirect 1.0: direct GPU memory access by devices such as network adaptors
- GPUDirect 2.0: direct copies from GPU to GPU inside a node
- GPUDirect/CUDA 5.0: direct communication between GPUs in different nodes
- MPI integration under development

30/10/2012 23 / 45 M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 24 / 45

CUDA variables

Variable declaration	Memory	Scope	Lifetime	Penalty/Latency	
int var;	register	thread	thread	1X	
<pre>int array_var[10];</pre>	local	thread	thread	100X (pre-Fermi)	
shared int shared_var;	shared	block	block	10X	
device int global_var;	global	grid	application	100X	
constant int constant_var;	constant	grid	application	1X	

- automatic scalar variables reside in registers, compiler will spill into local memory in shortage of registers
- automatic array variables (in the absence of qualifiers) reside in thread-local memory
- the type of memory used will be crucial for the performance of the application

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 26

CUDA Programming

Kernel execution

Function qualifiers

__global__ void f()

- function called from host, executed on device
- must return void

 function called from device, executed on device

- function called from host, executed on host
- _host__ and __device__ can be combined to generate CPU and GPU code

Built-in variables

All __global__ and __device__ functions have the following automatic variables:

- dim3 gridDim; dimension of the grid in blocks
- dim3 blockDim; dimension of the block in threads
- dim3 blockIdx; block index within grid
- dim3 threadIdx; thread index within block

The indices can be used to construct a global thread index, for instance for a block size of 5 threads.

thread_index = blockIdx.x*blockDim.
 x + threadIdx.x:

Elementary data transfers with CUDA

Memory allocation

Arrays in device global memory are typically allocated from CPU code. Functions:

```
cudaMalloc(void ** pointer, size_t nbytes);
cudaMemset(void * pointer, int value, size_t count);
cudaFree(void* pointer);
int n = 1024;
int nbytes = 1024*sizeof(int);
int *a_d = 0;
cudaMalloc((void**)&a_d, nbytes);
cudaMemset(a_d, 0, nbytes);
cudaFree(a_d);
```

Data transfers

The elementary function for data transfers is

```
oudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);
```

- direction is one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost or cudaMemcpyDeviceToDevice and specifies location of src and dst
- blocks CPU thread (asynchronous transfers possible in streams)

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 27 /

CUDA Programming

Kernel execution

Execution configuration

Modified C function call syntax:

```
kernel<<<dim3 dG, dim3 dB>>>(...):
```

Execution configuration:

- dg: dimension and size of grid in blocks
 - two-dimensional, ag.x and ag.y
 - total number of blocks launched is dG.x × dG.y
- dB: dimension and size of each block
 - two- or three-dimensional,
 dB.x, dB.y, and dB.z
 - total number of threads per block is dB.x × dB.y × dB.z
 - if not specified, dB.z = 1 is assumed

Built-in variables

All __global__ and __device__ functions have the following automatic variables:

- dim3 gridDim; dimension of the grid in blocks
- dim3 blockDim; dimension of the block in threads
- dim3 blockIdx; block index within grid
- dim3 threadIdx; thread index within block

The indices can be used to construct a global thread index, for instance for a block size of 5 threads.

```
thread_index = blockIdx.x*blockDim.
    x + threadIdx.x:
```

The Julia set

Definition

Let f(z) = p(z)/q(z) be a complex function, where p(z) and q(z) are complex polynomials.

The Julia set of f can be described as the set of points for which

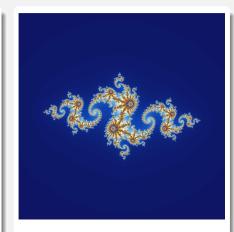
$$\lim_{n\to\infty}|f^{(n)}(z)|<\infty,$$

where $f^{(n)}(z)$ denotes the n-fold repeated application of f on z.

In general, the Julia set is a self-similar fractal. Standard example:

$$f(x) = z^2 + c,$$

where c is a complex constant



(Color codes are for different rates of divergence.)

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012

A worked example

Julia: CPU code 2

```
Julia set function
int julia( int x, int y ) {
    const float scale = 1.5;
    float jx = scale * (float)(DIM/2 - x)/(DIM/2);
    float jy = scale * (float)(DIM/2 - y)/(DIM/2);
    cuComplex c(-0.8, 0.156);
    cuComplex a(jx, jy);
    int i = 0;
    for (i=0; i<200; i++) {</pre>
        a = a * a + c;
        if (a.magnitude2() > 1000)
            return 0:
   }
    return 1;
```

- shift center of image to (0,0)
- re-scale to unit square in complex plane
- use scale factor to zoom
- arbitrary constant c in $z_{n+1} = z_n^2 + c$

Julia: CPU code 1

```
Driver
int main( void ) {
    CPUBitmap bitmap( DIM, DIM );
    unsigned char *ptr = bitmap.get_ptr();
    kernel( ptr );
    bitmap.display_and_exit();
```

Kernel

```
void kernel( unsigned char *ptr ){
   for (int y=0; y<DIM; y++) {</pre>
        for (int x=0; x<DIM; x++) {</pre>
            int offset = x + y * DIM;
            int juliaValue = julia( x, y );
            ptr[offset*4 + 0] = 255 * juliaValue;
            ptr[offset*4 + 1] = 0;
            ptr[offset*4 + 2] = 0;
            ptr[offset*4 + 3] = 255;
```

- CPUbitmap externally defined
- display_and_exit () externally defined
- julia() Will return 1 if point in set
- choose red and black colors. respectively

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 31 / 45

A worked example

Julia: CPU code 3

Data structure

```
struct cuComplex {
    float r;
    float i;
    cuComplex( float a, float b ) : r(a), i(b) {}
    float magnitude2( void ) { return r * r + i * i; }
    cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
};
```

- use cuComplex structure to represent complex numbers
- operator overloading for natural semantics

M. Weigel (Coventry/Mainz) 30/10/2012 32 / 45 M. Weigel (Coventry/Mainz)

30/10/2012 33 / 45

A worked example

Julia: GPU code 1

```
Driver
int main( void ) {
   DataBlock data;
    CPUBitmap bitmap( DIM, DIM, &data );
   unsigned char
                   *dev bitmap;
   HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, bitmap.image_size() ) );
   data.dev_bitmap = dev_bitmap;
           grid(DIM,DIM);
   dim3
   kernel << grid, 1>>>( dev_bitmap );
    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,
                              bitmap.image_size(),
                              cudaMemcpyDeviceToHost ) );
    HANDLE ERROR( cudaFree( dev bitmap ) );
    bitmap.display_and_exit();
```

- use cudaMalloc to allocate memory on device
- assign one thread per pixel, one thread per block, resulting in a DIM X DIM grid
- third dimension in dim3 defaults to one \Rightarrow 2D grid

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 34 / 45

Julia: GPU code 3

```
Julia function
__device__ int julia( int x, int y ) {
    const float scale = 1.5;
    float jx = scale * (float)(DIM/2 - x)/(DIM/2);
    float jy = scale * (float)(DIM/2 - y)/(DIM/2);
    cuComplex c(-0.8, 0.156);
    cuComplex a(jx, jy);
    int i = 0;
    for (i=0; i<200; i++) {</pre>
        a = a * a + c;
        if (a.magnitude2() > 1000)
            return 0;
   }
    return 1;
```

- __device_ qualifier for device function to be called from device code
- identical to CPU code apart from function qualifier

A worked example

Julia: GPU code 2

Kernel

```
__global__ void kernel( unsigned char *ptr ) {
   // map from blockIdx to pixel position
   int x = blockIdx.x;
   int y = blockIdx.y;
   int offset = x + y * gridDim.x;
   // now calculate the value at that position
   int juliaValue = julia( x, y );
   ptr[offset*4 + 0] = 255 * juliaValue;
   ptr[offset*4 + 1] = 0;
   ptr[offset*4 + 2] = 0;
   ptr[offset*4 + 3] = 255;
```

- __global__ qualifier for device function to be called from host
- each thread gets threadIdx.x, threadIdx.y, blockIdx.x, and blockIdx.y
- translate to offset in image array
- note that for loops have gone away
- four chars to represent R, G, B and alpha channels

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 35 / 45

A worked example

Julia: GPU code 4

Data structure

```
struct cuComplex {
    float r;
    float i;
    __device__ cuComplex( float a, float b ) : r(a), i(b) {}
    __device__ float magnitude2( void ) {
       return r * r + i * i;
    __device__ cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    __device__ cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
};
```

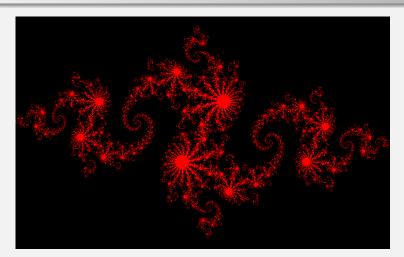
- almost identical to CPU version
- only difference are __device__ function qualifiers

M. Weigel (Coventry/Mainz) 30/10/2012 36 / 45 M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 37 / 45

Julia: result



Play around with code, cf.

J. Sanders, E. Kandrot: "CUDA by example — An Introduction to General-Purpose GPU Programming", (Addison Wesley, Upper Saddle River, 2011).

M. Weigel (Coventry/Mainz) 30/10/2012 38 / 45

Extended streaming multiprocessor (SMX)

Features

- 192 (instead of 32) cores
- one special function unit per 6 cores (instead of 8)
- maximum number of threads/SM 2048 (instead of 1536)
- 64K 32-bit registers
- 4 warp schedulers
- more flexible shared memory configurations

Julia: GPU code — improvements

- On Fermi, maximum number of resident blocks per SM is 8 (16 for Kepler), hence 24 out 32 cores (176 out of 192 for Kepler) are idle
- ullet To improve, one could introduce tiles of, say, 16×16 pixels with execution configuration

```
dim3
        grid((DIM+15)/16,(DIM+15)/16);
       block(16, 16);
dim3
kernel << grid , block >>> ( dev_bitmap );
```

and corresponding modification to kernel,

```
int x = blockIdx.x*blockDim.x+threadIdx.x;
int y = blockIdx.y*blockDim.y+threadIdx.y;
int offset = x + y * DIM;
if(x >= DIM or y >= DIM) return;
```

- could have used virtual unified addressing to eliminate the CPU copy of the image
- could integrate with OpenGL for interactive rendering

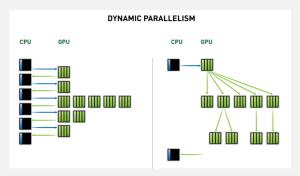
0 ...

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 39 / 45

Dynamic parallelism

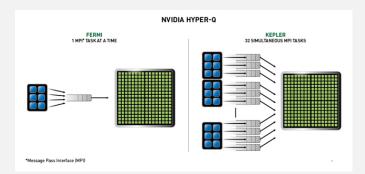


- kernels can more easily generate new threads
- kernels can manage associated streams
- more versatile for recursive algorithms
- altogether better load balancing

M. Weigel (Coventry/Mainz)

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 New in Kepler

Hyper-Q



- several work queues allowed to access GPU
- o in particular, several CPU threads can access came GPU
- optimized for mixed-type parallelism in MPI clusters

M. Weigel (Coventry/Mainz)

GPU basics

30/10/2012 43 / 45

45

New in Kepler

Summary and outlook

This lecture

This lecture has given a basic introduction into GPGPU and, in particular, the CUDA framework of GPU programming. A basic example has provided a feel for how to go about in using these devices for scientific computing.

Next lecture

In lecture 2, we will start using GPUs for simulating spin models with local algorithms. In terms of GPU programming, a number of additional concepts such as thread synchronization, memory coalescence, and atomic operations will be introduced.

Reading

- Zillions of internet resources, e.g., N. Matloff, "Programming on Parallel Machines", http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
- D. B. Kirk, W.-m. W. Hwu, "Programming Massively Parallel Processors" (Morgan Kaufmann, Amsterdam, 2010).
- J. Sanders, E. Kandrot: "CUDA by example An Introduction to General-Purpose GPU Programming", (Addison Wesley, Upper Saddle River, 2011).

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 45 / 45

New in Keple

Kepler: further improvements

	FERMI GF100	FERMI GF104	KEPLER GK104	KEPLER GK110
Compute Capability	2.0	2.1	3.0	3.5
Threads / Warp	32	32	32	32
Max Warps / Multiprocessor	48	48	64	64
Max Threads / Multiprocessor	1536	1536	2048	2048
Max Thread Blocks / Multiprocessor	8	8	16	16
32-bit Registers / Multiprocessor	32768	32768	65536	65536
Max Registers / Thread	63	63	63	255
Max Threads / Thread Block	1024	1024	1024	1024
Shared Memory Size Configurations (bytes)	16K	16K	16K	16K
	48K	48K	32K	32K
			48K	48K
Max X Grid Dimension	2^16-1	2^16-1	2^32-1	2^32-1
Hyper-Q	No	No	No	Yes
Dynamic Parallelism	No	No	No	Yes

Compute Capability of Fermi and Kepler GPUs

- quad-warp scheduler
- warp shuffle instruction
- some features, such as HyperQ and Dynamic Parallelism are *disabled* in desktop/gaming GPUs!

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 44 / 45